Inappropriate hepatic cholesterol synthesis expands the cellular pool of sterol available for recruitment by bile acids in the rat.
نویسندگان
چکیده
These studies test the hypothesis that a major determinant of excessive biliary cholesterol secretion is a level of hepatic sterol synthesis that is inappropriately high relative to the needs of the liver cell for preserving cholesterol balance. Biliary cholesterol secretion was measured in vivo in two models after loading the hepatocyte with sterol by two different mechanisms. In the first model, cholesterol was delivered physiologically to the liver in chylomicron remnants. This resulted in a sixfold increase in cholesteryl ester content and marked suppression of cholesterol synthesis, but biliary cholesterol secretion remained essentially constant. In the second model, 3-hydroxy-3-methyl-glutaryl CoA reductase levels in the liver were markedly increased by chronic mevinolin (lovastatin) administration. Withdrawal of the inhibitor resulted in a sudden fivefold increase in the rate of sterol synthesis in the liver of the experimental animals that was inappropriately high for cellular needs. This excessive synthesis, in turn, was accompanied by a fivefold increase in the cholesteryl ester content, enrichment of microsomal membranes with cholesterol and, most importantly, by a threefold increase in the rate of biliary sterol secretion. As the rate of sterol synthesis gradually returned to normal over 48 h, the cholesterol ester content, the lipid composition of the microsomal membranes, and rate of cholesterol secretion into bile also returned to baseline values. These results further support the concept of functional compartmentalization of cholesterol in the hepatocyte. Derangements that cause an inappropriately high rate of sterol synthesis in the endoplasmic reticulum may lead to an expansion of that pool of cholesterol that is recruitable by bile acids and, hence, to greater situation of the bile.
منابع مشابه
The sources of rat biliary cholesterol and bile acid.
The precursor sources of bile acid and bile neutral sterol were evaluated in the rat using Triparanol to inhibit the terminal reduction in the synthesis of cholesterol. During the initial period of Triparanol administration, the accumulation of hepatic desmosterol acts to segregate relatively newly synthetic hepatic sterol from the bulk of the equilibrated sterol mass. Biliary excretion of newl...
متن کاملRegulation of classic and alternative bile acid synthesis in hypercholesterolemic rabbits: effects of cholesterol feeding and bile acid depletion.
The effect of cholesterol feeding (3 g/day) on bile acid synthesis was examined in 10 New Zealand white rabbits (NZW), 8 Watanabe heterozygous and 10 homozygous rabbits with partial and complete deficiencies of LDL receptors. After 10 days of cholesterol feeding, bile fistulas were constructed and bile acid pool sizes were measured. Cholesterol feeding increased plasma and hepatic cholesterol l...
متن کاملOverexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice.
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet al...
متن کاملIncreases in biliary cholesterol-to-bile acid ratio in pregnant hamsters fed low and high levels of cholesterol.
Gallstones develop when the secretion of cholesterol is elevated compared with the secretion of bile acids into bile. One of the risk factors for the formation of gallstones is pregnancy. Because the pregnancy-induced increase in hepatic cholesterol synthesis rates could play a critical role in the development of cholesterol stones, the aim of the present study was to determine whether stone fo...
متن کاملDisruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 84 4 شماره
صفحات -
تاریخ انتشار 1989